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The relativistic Bose gas in an even-dimensional space 
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Abstract. The thermodynamic behaviour of a massive relativistic ideal Bose gas in an 
(even) d-dimensional space is studied. The thermodynamic functions are expressed as 
polynomials (or rational functions) in kBT/mc2 whose coefficients are proportional to the 
Bose-Einstein functions. Their closed forms permit a complete analytic discussion of the 
crossover from the non-relativistic limit to the ultra-relativistic limit. This transition is 
equivalent to the dimensional crossover from a d-dimensional to a 2d-dimensional non- 
relativistic gas behaviour. 

1. Introduction 

The study of the thermodynamic properties of the relativistic Bose gas has drawn 
much attention lately (Haber and Weldon 1981, Araglo de Carvalho and Goulart 
Rosa 1980a, b, Beckmann er a1 1979, 1980, Landsberg 1981). This interest is partly 
derived from the study of some recent problems where the physics of the ideal 
relativistic quantum gas is believed to play an important role in their understanding. 
At the beginning of the last decade (Politzer 1973, Gross and Wilczek 1973) it was 
verified that non-Abelian gauge theories in four dimensions are asymptotically free. 
As the momentum space cut-off goes to infinity, the coupling constant vanishes 
resulting in a gauge field theory which is free at very short distances. It was also 
conjectured that the quarks would be confined in such theories. The asymptotic 
freedom and the quark confinement stand out as major results of the modern theory 
of strong interactions. More recently Kuzmin and Shaposhnikov (1979) discussed the 
cosmological consequences of the existence of a primordial massive photon gas 
therefore bringing further attention to this matter. On the other hand even though 
the ideal relativistic Bose gas has been an object of investigation for a long time (see 
Landsberg and Dunning-Davies (1965) for a historical note on the development of 
the subject), there are still some important aspects of its behaviour which are not yet 
fully understood. For instance the corrections to the ultra-relativistic limit of the 3d 
relativistic Bose gas in the low-temperature phase are unknown at the present (Araglo 
de Carvalho and Goulart Rosa 1980b). Another reason for this continued interest is 
that, besides giving a correct qualitative account of many important phenomena, the 
ideal Bose gas is one of the few systems which can undergo a phase transition-the 
Bose-Einstein condensation-and whose properties can be calculated exactly. 
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In this paper we discuss the relativistic Bose gas in d-dimensional space. The 
qualitative difference in the analytic expressions of the thermodynamic properties 
resulting from the parity of the dimensionality of the gas is pointed out and we explore 
the simplicity which emerges from the description of the relativistic gas in an even- 
dimensional space. Apart from the simplicity we must add that the study of the system 
in an even-dimensional space is essential to the full comprehension of its criticality. 
It is well known that the dimensions two and four are very special ones in the study 
of the Bose gas. For the massive gas the Bose-Einstein condensation will occur only 
if d > 2; on the other hand for the massless gas the lower critical dimensionality is 
one. Also the critical exponents of the non-relativistic gas will become indepen- 
dent of the system dimensionality if d >4 ;  for the photon gas this will happen for 

In our formulation the fugacity series expansions for the thermodynamic functions 
are summed up and expressed as polynomials (or ratios of polynomials) of order ‘d’ 
in the parameter (pmc2)-’. The coefficients in the polynomial are, up to constants, 
the familiar Bose-Einstein functions. In these expressions the highest-order terms 
(d) give the ultra-relativistic limit while the lowest-order terms (d/2) are the non- 
relativistic contributions. The expressions for the two-dimensional gas have the 
simplest forms since the thermodynamical potential contains only the contributions 
from these extreme regimes. A d-dimensional quantum gas, the so-called Landsberg 
gas, defined by the approximate density of states consisting only of the ultra-relativistic 
and non-relativistic limits of the exact density of states, has been proposed by Lands- 
berg (1981) and studied by Dunning-Davies (1981a). The expressions obtained for 
the thermodynamic functions of the Landsberg gas will coincide with the corresponding 
expressions for the exact system in the two-dimensional case, in other words, the 
Landsberg gas in an exact relativistic Bose gas in two dimensions. In higher dimensions, 
the exact d(even)-dimensional relativistic gas will have d/2-l(intermediary) contribu- 
tions to the grand potential besides the ultra-relativistic and non-relativistic limits. 
They describe the amount of mixture between the extreme regimes. 

Because of the power dependence on (pmc’) the study of the transition from the 
UR to the NR behaviour in the thermodynamic functions of the even-dimensional gas 
can be carried out analytically. As has been pointed out by May (1964) and can be 
seen in the comprehensive tables of thermodynamic functions of Landsberg’s (1981) 
paper, an ultra-relativistic gas in d dimensions behaves like a 2d-dimensional non- 
relativistic gas. Therefore the transition, which is driven by the mass, between the 
UR and NR limits can also be viewed as a dimensional crossover of the non-relativistic 
gas. 

d > 2 .  

2. Formulation of the problem and the grand potential 

Let us consider a gas of relativistic spinless bosons of mass m in a cubic box of volume 
V = Ld (d will be restricted to be an even number later on). Without loss of generality 
we impose periodic boundary conditions on the particle wavefunctions. The energy 
levels are then given by 

E2 = ( f r ~ k ) ~ + m ~ c ~  ki = 2 ~ p i / L  pi = 0, f 1, * . . (1) 

where i = 1 ,2 , .  . . , d, and c and h are the speed of light and Planck’s constant. In 
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the limit of infinite volume (L + 00) the single-particle partition function 

z (P)=CexP-(PEk)  
k 

which contains all the information for a complete description of the system (Goulart 
Rosa and Grandy 1973, Grandy and Goulart Rosa 1981) can be evaluated by 
converting the sum over k to an integral containing the density of states, 

After some straightforward algebra involving an integral representation and a recursion 
relationship for the modified Bessel function of the second kind K , ( f )  (Gradshteyn 
and Ryzhik 1965) we obtain 

2(d+1)/2 (d-1)/2 

z(p)=Ld-(:) A: K(d+l)/2(U) (4) 

where A, = h/mc is the particle Compton wavelength and U = pmc2 is the expansion 
parameter of the theory. We remark that the ground-state contribution to Z(P) is 
lost in equation (4) due to the replacement of the summation over k by the integration 
over the energy. This situation is, however, easily repaired by adding the ground-state 
term exp(-U) directly to equation (4). 

It is well known that the thermodynamic behaviour of the system can be obtained 
from the logarithm of the grand partition function E, which has been shown to be 
the following integral transform of Z(p) (Goulart Rosa and Grandy 1973). 

v t i w  

I n s = - -  - ' / t-' cot(?rt) exp(p[r)Z(Pf) dt, O < y < l .  ( 5 )  2i v-iw 

The integral resulting from the substitution of equation (4) into equation ( 5 )  can be 
evaluated employing Cauchy's theorem and a limit process. This is implemented by 
evaluating the integral around a finite contour consisting of a finite straight line segment 
of length 2R parallel to the imaginary axis and at a distance y from the origin, which 
is closed to the right by a semi-circle of radius R. The radius is chosen such that the 
contour does not pass through any of the simple poles of the integrand which are 
located at t = r, r = 1 ,2 ,3 ,  . . . due to the factor cot(.rrt) of the integrand in equation 
(5 ) .  The original integral is obtained in the limit R -+CO imposing the condition that 
5 S m c  in order that the contribution from the semi-circle vanishes. In order to 
discuss the Bose-Einstein condensation and the system's low-temperature phase, one 
has to set the chemical potential 5 equal to the particle rest energy. A rigorous proof 
that the Meliin transform formalism we are using describes this case correctly has 
been provided by Dunning-Davies (1981b). Recalling that the modified Bessel func- 
tions K,(r) are regular functions throughout the f-plane cut along the negative axis 
we get that, in an even-dimensional space, 

2 

where the first term is the ground-state contribution, 2 0  = d, 

a =P(mc2-5)  

&(a) = 1 n-" exp(-na) 
m 

n = l  
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To obtain equation (6) we have used the fact that the modified Bessel functions of 
half-integer order are given by (Gradshteyn and Ryzhik 1965) 

Although equivalent to the fugacity series expansion obtained by Beckmann et a1 
(1979) and to the integral expression of Landsberg (1981), the expression for In E is 
written in a much simpler form which allows much easier manipulation. In the present 
formulation the non-relativistic (U -* CO) and ultra-relativistic (U -* 0) limits are obtained 
by keeping only the first or the last term in the polynomial in equation (6),  respectively. 
Also all the numerical studies of the intermediary case of finite U carried out by both 
Beckmann eta1 (1980) and Landsberg (1981) can now be done analytically. 

3. Thermodynamic functions 

Knowledge of In E is sufficient for the derivation of all the functions which describe 
the thermodynamic behaviour of the system 

S = -( g) = ( 4 ~ ) ~ k ~ (  r\r) L 1 (D+n) !  
V. e .=on!(D-n)!  

L D ( D + n ) ! ( D + n )  1 D + n  

U = E - Nmc2 = ( 4 ~ r ) ~ k ~ T  ( A )  - 20 n ! ( D - n ) !  (224) F D + n + l ( f f )  (13) 

where only the contributions from the excited states are written down. The critical 
temperature T, is obtained from equation (12) by setting a = 0. 

From the internal energy U we can calculate the heat capacity at constant volume 
C, = (8U/8T)N,v and its jump A at the critical temperature 

L D ( D + n ) ! ( D + n ) ( D + n + l )  1 D + n  

n ! ( D  -n) !  C; = C,( T s T,) = ( 4 ~ r ) ~ (  ks (Z;) F D + n + l ( O )  
n =O 
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C: = C,(T > T,) 

where U, = mc2 f ke T,. 
Noticing that F,(O) is infinite for u s  1 we see immediately from equations (12) 

and (15) that for a massive gas there is Bose-Einstein condensation for (even) 
dimensions d s 4  but a gap in the heat capacity will develop only at the (even) 
dimensions d 3 6 ,  since for d = 4 we have A = 0. For the massless gas there is 
Bose-Einstein condensation at the (even) dimensions d 3 2 and as the only term in 
the denominator of equation (15) is n = D the heat capacity will display a jump 
whenever (even) d 2 4. A numerical study of A/Nks as function of d (parametrised 
by pmc2) has been carried out by Landsberg (19811, Dunning-Davies (1981) and 
Beckmann et a1 (1980). The latter authors have also obtained A numerically as a 
function of pmc' for (both even and odd) dimensions between five and ten. In these 
works the jump expression is given in terms of integrals which do not admit analytic 
solution for the massive gas and a numerical evaluation of these integrals is necessary. 
Again this must be compared with the simple rational expression obtained above. 

4. Conclusions 

We have used the grand canonical formalism to investigate the effects of dimensionality 
on the thermodynamic functions of an ideal massive relativistic Bose gas. All 
expressions derived are exact and their simple functional forms result from the 
truncated, but correct, dependence on p of the single-particle partition function in 
an even-dimensional space. In the present formulation, several pieces of information 
are quickly obtained directly from the equation of the logarithm of the grand partition 
function. The non-relativistic as well as the ultra-relativistic limits are always present 
in the expressions for the thermodynamic functions, the other terms representing their 
admixture. The statement (AragBo de Carvalho and Goulart Rosa 1980b) that the 
thermodynamic behaviour of the massive gas in the limit T+O is dominated by the 
non-relativistic contributions is now transparent in the present formulation. Below 
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the critical temperature (a = 0) the calculation and comparison of each contribution 
in the polynomial expressions of the thermodynamic functions are easily carried out, 
allowing us to estimate the (mass/temperature) range where the non-relativistic or 
ultra-relativistic contributions are dominant. This situation must be contrasted with 
the fact that the corrections to the ultra-relativistic term in the low-temperature phase 
of a 3d gas are not known at present, as pointed out in the introduction. Since the 
evaluation and the manipulation of the thermodynamic functions can be carried out 
more easily for even-dimensional systems, we can use the results obtained for two 
consecutive even-dimensional systems as an estimation, or better as bounds, for the 
corresponding quantities of the interpolated odd-dimensional system. This is an 
alternative approach to the use of an approximate density of states. As a final comment 
we mention that a similar qualitative difference in the thermodynamic functions of a 
relativistic Fermi gas will also result from the parity of the dimensionality of the system. 
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